

UNIVERSITÀ DI PISA

Machine Learning for Industry 4.0

Reshawn Ramjattan Tutors: Prof. Daniele Mazzei & Prof. Davide Bacciu

Agenda

- 1. Introduction
- 2. Systematic Review
- 3. Routes for Future Work

Introduction

What is Industry 4.0?

The rapid changes due to increasing interconnectivity and smart automation

Types of ML applications?

- Predictive Maintenance
- Forecasting Load and Demand

- There are reviews for top ML applications
- Not many of the entire intersection
- An infeasible number of papers to read
- Topic Modelling as an enabling technique

Research Questions

- 1. For what industry 4.0 problems are ML solutions most commonly discussed?
- 2. What ML methods see the most frequent use in these areas?
- 3. How do the areas focused on in academic literature compare to those in the whitepapers of top industrial companies?

Paper Gathering

- Query: ("industrial" OR "industry 4.0")
 AND ("deep learning" OR "machine learning"
 OR "artificial intelligence" OR)
- Scopus, Web of Science
- Final set: 45,783 papers

Papers over time

Topic Modelling - BERTopic Algorithm

- 1. Embeddings: Get paper repr. with BERT using pre-trained model
- 2. **Reduce**: Dimensionality reduction with UMAP for better cluster results
- 3. **Cluster**: Cluster embeddings using HDBSCAN
- 4. Topic Words: Use variant of TF-IDF to get top words for each cluster

Topic Modelling - Results

		o. Predictive Models & Digital Systems for Industrial Machines
		7. Sentiment Analysis & Recommender Systems
		8. Optimization of Job Scheduling
	% of 1	Data
chines	25.44	4. Tool wear, Cutting Parameters
	16.33	5. Thermal Processes & Fluid Production
	10.45	
	3.25	6. Thermal Processes & Fluid Production
r Milling	3.01	
Production	2.56	9. Gait Recognition
ces	2.37	10 M
	2.37	
	1.91	
es & Images	1.30	
	1	2. Modelling for Agriculture & Water Treatment

3.Forecasting Load & Power Demands

% of Data
25.44
16.33
10.45
3.25
3.01
2.56
2.37
2.37
1.91
1.30

0. Frediction & Modelling for CO

What Industry problems are commonly discussed?

- Security/Risk Control
- Smart Production
- Connectivity
- Service Optimization
- Human-Machine-Interaction
- Supply Chain Management

Table 3: Top 20 Results of Topic Modelling inclusive of Sub-Topics	
Topic	% of Data
0. Security & Intrusion Detection	4.38
1. Fault Diagnosis & Detection	3.88
2. Forecasting Load & Power Demands	3.25
3. Industrial IoT & Wireless Communication	3.05
4. Tool wear, Cutting Parameters & Surface Materials for Milling	3.01
5. Prediction & Modelling of Thermal Processes & Fluid Production	2.56
6. Prediction & Modelling for COVID-19 & Medical Devices	2.37
7. Sentiment Analysis & Recommender Systems	2.37
8. Reinforcement Learning for Robotics in Assembly & Planning	2.00
9. Optimization of Job Scheduling	1.91
10. Modelling Control of Robotic Manipulators	1.83
11. Modelling for Processing Wastewater & Water Treatment	1.80
12. Predictive Maintenance & RUL Forecasting	1.63
13. Adaptive Motor Control	1.60
14. Quality Inspection	1.37
15. Fuzzy Risk Analysis & Safety Management	1.36
16. Pose Estimation for Grasping Objects	1.33
17. Gait Recognition & Modelling using Sensors, Wearables & Images	1.30
18. Engineering Education & Skill Development	1.16
19. Forecasting Crop Yields	1.03

ML Methods

- CNNs are the most common across the top 3
- RNNs see the most use in sequence problems
- RL has good presence despite being relatively less established in practical cases

Convolutional Neural Network	1209	2489	1078	79	57	115	89	140	4	165	
Support Vector Machine	909	300	771	149	125	163	177	96	9	124	- 2000
Recurrent Neural Network	863	540	204	234	54	82	98	222	4	85	
Decision Trees	640	102	607	99	68	81	216	56	27	63	- 1500
Autoencoder	1014	423	138	43	32	25	42	97	2	21	- 1000
Reinforcement Learning	410	673	34	95	36	11	16	18	87	8	
Nearest Neighbours	87	27	59	4	7	4	24	15	1	18	- 500
GANs	7	75	14	1	1	0	0	1	0	0	
	0. Predictive Models & Digital Systems for Industrial Machines	1. Robotic Automation	2. Modelling for Agriculture & Water Treatment	3. Forecasting Load & Power Demands	4. Tool wear, Cutting Parameters & Surface Materials for Milling	5. Prediction & Modelling of Thermic Processes & Fluid Production	6. Prediction & Modelling for COVID-19 & Medical Devices	7. Sentiment Analysis & Recommender Systems	8. Optimization of Job Scheduling	9. Gait Recognition & Modelling using Sensors, Wearables & Images	- 0

Perspective of Top Companies

- 17 recent and relevant Whitepapers from top companies (McKinsey, Accenture, Microsoft, Bain & Co., Deloitte, PwC, Boston Consulting Group)
- Manually reviewed for "high potential value" areas

Mind Map of Topics

- Smart Production
- Connectivity
- Supply Chain Management
- Human-Machine-Interaction
- Data Analytics

Most common: Service Opt.

Most cost decreasing: Smart Prod.

How do the topics compare to industry focus?

- Generally aligns well
- Focus on smart production cases but its justifiable
- Some topic areas just aren't as "publishable"
- Companies are more focused on the bigger picture, not just the ML use case
- More future work on the topics that support adoption would be worthwhile

Going Forward

Democratized Technology

- Increasing access to technology
- Making it easier for non-experts to apply ML to industry problems
- Motivating adoption by demonstrating value as quickly as possible

Going Forward

Continual Learning

- Helps models adapt to changes that worsen performance
- While minimizing catastrophic forgetting
- Avoids complete retraining

Going Forward

Distributed ML

- Low-latency decentralized usage of models
- Ideal for low-bandwidth environments
- Security, privacy & reliability

Conclusion

- ML has a lot of potential in industry 4.0
- Security, Smart Prod., IoT, Service Optimization, Robotic Automation & Logistics
- CNNs were the most common ML method
- Academic lit. aligns with industry perspective
- Focusing more on integration and ease-of-use can help adoption

Thanks!

reshawn.ramjattan@phd.unipi.it